Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 238
Filter
1.
Open Access Macedonian Journal of Medical Sciences ; Part F. 11:237-249, 2023.
Article in English | EMBASE | ID: covidwho-20239180

ABSTRACT

Coronavirus disease is a serious viral infection that is characterized by severe inflammation and lymphopenia. The virus attacks many organs causing acute respiratory distress and malfunctioning of the organs leading to death. Through strengthening of the innate immune system, a balanced diet plays a critical role in defense against bacterial and viral diseases. A healthy diet before, during and after an infection can lessen the severity of the symptoms and speed up the recovery of damaged cells. Due to the Mediterranean diet's high concentration of bioactive polyphenols, which have antioxidant, anti-inflammatory, and antithrombic properties, numerous studies have suggested that it is a preventative dietary strategy against many diseases including coronavirus disease. Nutrition and herbal plants play a key role to enhance the immunity of people to protect and fight against coronavirus. Diet rich in antioxidants and phytochemicals represents perfect barrier to the virus through elevation of the innate immunity of the body. In addition, gut microbiota including prebiotics, probiotics, and synbiotics were found to enhance immunity to reduce the symptoms of the disease during infection. Protein-rich foods and honey bee products reported significant role during and post-coronavirus infection. This review presents updated information from original pre-clinical and clinical researches, and review articles as well to expose the nutritive strategies including breastfeeding benefits to infants pre-infection, during, and post-infection with coronavirus.Copyright © 2023, Scientific Foundation SPIROSKI. All rights reserved.

2.
Microbiome in Gastrointestinal Cancer ; : 289-302, 2023.
Article in English | Scopus | ID: covidwho-20238426

ABSTRACT

Coronavirus disease 2019 (COVID-19) pandemic has changed the globe ever since its first appearance in December 2019. It is an acute respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and over 540 million people have contracted COVID-19 as of mid-2022. For COVID-19 patients, gastrointestinal symptoms including anorexia and diarrhoea are frequently occurred, implicating the involvement of gut microbiota in the pathogenesis of COVID-19. Indeed, accumulating evidence has reported the association of altered microbiota with SARS-CoV-2 infection, disease severity, and post-acute COVID-19 syndrome. In this chapter, the roles of gut microbiota in COVID-19 as well as its mechanistic interplays with host after SARS-CoV-2 infection are explored. Given its importance to this disease, approaches to restore the altered microbiota may be utilised as potential treatments of COVID-19. Hence, different strategies to modulate the microbiota including dietary intervention, prebiotics, and probiotics against SARS-CoV-2 infection are also discussed. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023.

3.
Front Cell Infect Microbiol ; 13: 1191936, 2023.
Article in English | MEDLINE | ID: covidwho-20244447

ABSTRACT

Numerous studies have demonstrated that gut microbiota plays an important role in the development and treatment of different cardiovascular diseases, including hypertension, heart failure, myocardial infarction, arrhythmia, and atherosclerosis. Furthermore, evidence from recent studies has shown that gut microbiota contributes to the development of myocarditis. Myocarditis is an inflammatory disease that often results in myocardial damage. Myocarditis is a common cause of sudden cardiac death in young adults. The incidence of myocarditis and its associated dilated cardiomyopathy has been increasing yearly. Myocarditis has gained significant attention on social media due to its association with both COVID-19 and COVID-19 vaccinations. However, the current therapeutic options for myocarditis are limited. In addition, little is known about the potential therapeutic targets of myocarditis. In this study, we review (1) the evidence on the gut-heart axis, (2) the crosslink between gut microbiota and the immune system, (3) the association between myocarditis and the immune system, (4) the impact of gut microbiota and its metabolites on myocarditis, (5) current strategies for modulating gut microbiota, (6) challenges and future directions for targeted gut microbiota in the treatment of myocarditis. The approach of targeting the gut microbiota in myocarditis is still in its infancy, and this is the study to explore the gut microbiota-immune system-myocarditis axis. Our findings are expected to pave the way for the use of gut microbiota as a potential therapeutic target in the treatment of myocarditis.


Subject(s)
COVID-19 , Cardiomyopathy, Dilated , Gastrointestinal Microbiome , Myocarditis , Young Adult , Humans , Myocarditis/therapy , Myocardium
4.
Int J Mol Sci ; 24(11)2023 Jun 05.
Article in English | MEDLINE | ID: covidwho-20238934

ABSTRACT

Post-intensive care syndrome (PICS) poses a serious threat to the health of intensive care unit (ICU) survivors, and effective treatment options are currently lacking. With increasing survival rates of ICU patients worldwide, there is a rising interest in developing methods to alleviate PICS symptoms. This study aimed to explore the potential of using Hyaluronan (HA) with different molecular weights as potential drugs for treating PICS in mice. Cecal ligation and puncture (CLP) were used to establish a PICS mice model, and high molecular weight HA (HMW-HA) or oligo-HA were used as therapeutic agents. Pathological and physiological changes of PICS mice in each group were monitored. 16S rRNA sequencing was performed to dissect gut microbiota discrepancies. The results showed that both molecular weights of HA could increase the survival rate of PICS mice at the experimental endpoint. Specifically, 1600 kDa-HA can alleviate PICS in a short time. In contrast, 3 kDa-HA treatment decreased PICS model survivability in the early stages of the experiment. Further, via 16S rRNA sequence analysis, we observed the changes in the gut microbiota in PICS mice, thereby impairing intestinal structure and increasing inflammation. Additionally, both types of HA can reverse this change. Moreover, compared to 1600 kDa-HA, 3 kDa-HA can significantly elevate the proportion of probiotics and reduce the abundance of pathogenic bacteria (Desulfovibrionaceae and Enterobacteriaceae). In conclusion, HA holds the advantage of being a potential therapeutic drug for PICS, but different molecular weights can lead to varying effects. Moreover, 1600 kDa-HA showed promise as a protective agent in PICS mice, and caution should be taken to its timing when considering using 3 kDa-HA.


Subject(s)
Gastrointestinal Microbiome , Hyaluronic Acid , Mice , Animals , Molecular Weight , RNA, Ribosomal, 16S/genetics
5.
Nutrients ; 15(11)2023 Jun 05.
Article in English | MEDLINE | ID: covidwho-20232888

ABSTRACT

Natural herbs and functional foods contain bioactive molecules capable of augmenting the immune system and mediating anti-viral functions. Functional foods, such as prebiotics, probiotics, and dietary fibers, have been shown to have positive effects on gut microbiota diversity and immune function. The use of functional foods has been linked to enhanced immunity, regeneration, improved cognitive function, maintenance of gut microbiota, and significant improvement in overall health. The gut microbiota plays a critical role in maintaining overall health and immune function, and disruptions to its balance have been linked to various health problems. SARS-CoV-2 infection has been shown to affect gut microbiota diversity, and the emergence of variants poses new challenges to combat the virus. SARS-CoV-2 recognizes and infects human cells through ACE2 receptors prevalent in lung and gut epithelial cells. Humans are prone to SARS-CoV-2 infection because their respiratory and gastrointestinal tracts are rich in microbial diversity and contain high levels of ACE2 and TMPRSS2. This review article explores the potential use of functional foods in mitigating the impact of SARS-CoV-2 variants on gut microbiota diversity, and the potential use of functional foods as a strategy to combat these effects.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Humans , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Functional Food
6.
Front Microbiol ; 14: 1174800, 2023.
Article in English | MEDLINE | ID: covidwho-20230676

ABSTRACT

Depression is a common psychological disease, which has become one of the main factors affecting human health. It has a serious impact on individuals, families, and society. With the prevalence of COVID-19, the incidence of depression has further increased worldwide. It has been confirmed that probiotics play a role in preventing and treating depression. Especially, Bifidobacterium is the most widely used probiotic and has positive effects on the treatment of depression. The mechanisms underlying its antidepressant effects might include anti-inflammation and regulation of tryptophan metabolism, 5-hydroxytryptamine synthesis, and the hypothalamus-pituitary-adrenal axis. In this mini-review, the relationship between Bifidobacterium and depression was summarized. It is hoped that Bifidobacterium-related preparations would play a positive role in the prevention and treatment of depression in the future.

7.
Russian Journal of Pain ; 20(1):48-55, 2022.
Article in Russian | EMBASE | ID: covidwho-2324710

ABSTRACT

The review is dedicated the interconnection between neurodegenerative diseases, chronic pain and gut microbiota's structure and function. The gut microbiota's role in gut-brain axis, neuroimmune interaction is considered. The modern data about gut dysbiosis in Alzheimer disease, Parkinson disease, osteoarthrosis, neuropathic pain in COVID infection, muscular-skeletal pain in fibromyalgia, irritable bowel syndrome et cetera are provided. The gut microbiota's modification by means of pre and probiotics in combination with medicines and diet modification can be used for the treatment of chronic pain and dementia.Copyright © T.M. MANEVICH.

8.
Delineating Health and Health System: Mechanistic Insights into Covid 19 Complications ; : 1-494, 2021.
Article in English | Scopus | ID: covidwho-2326382

ABSTRACT

This book discusses the organ-specific systemic manifestations of COVID-19. The initial chapters of the book review the origin and evolution of the coronaviruses, followed by pathogenesis and immune response during COVID-19 infection. The book also provides insight into the role of angiotensin-converting enzyme 2 in the onset of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis. It summarizes the neurological aspects of SARS-CoV2, including transmission pathways, mechanisms of invasion into the nervous system, and mechanisms of neurological disease. It also delineates the association of severe disease with high blood plasma levels of inflammatory cytokines and inflammatory markers in SARS-CoV-2 infection. Lastly, it discusses the perturbation of gut microbiota by SARS-CoV-2 and uncovers the potential risk of virus infection on reproductive health. © The Editor(s) (if applicable) and The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2021.

9.
Delineating Health and Health System: Mechanistic Insights into Covid 19 Complications ; : 349-368, 2021.
Article in English | Scopus | ID: covidwho-2325852

ABSTRACT

The world is currently facing a global pandemic caused by SARS-CoV-2. Although COVID-19 is primarily a respiratory illness, various studies have demonstrated the ability of this virus in spreading to extrapulmonary sites, thereby leading to multiorgan failure and eventually death in highly susceptible individuals. The scourge of the virus world over has led to a severe impact (direct and indirect) on the mental health of individuals belonging to all age groups. In this context, the role of gut microbiota in influencing mental health via the gut-brain axis holds immense significance. Recent evidences have highlighted the possible link between COVID-19 infection, gut dysbiosis, and various psychological and neurological abnormalities. Thus, maintenance of a healthy gut microbiome becomes imperative given the absence of a definite cure to such a dangerous illness as COVID-19. Various strategies such as regular intake of a healthy diet and personalized nutrition, co-supplemented with probiotics, prebiotics, and psychobiotics, should be adopted wherein gut microbiota profile can be manipulated for providing multiple benefits to the host. Religiously following such practices will not only enrich the gut with beneficial microbes and boost host immunity but also prove to be a strong prophylactic measure in reducing the incidence/severity of diseases such as COVID-19 virulence and result in improved prognosis of infected individuals. © The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2021.

10.
J Med Virol ; 95(5): e28784, 2023 05.
Article in English | MEDLINE | ID: covidwho-2326406

ABSTRACT

Several studies have shown a possible correlation between gut microbiota and COVID-19. However, the cause-and-effect relationship between the two has not been investigated. We conducted a two-sample Mendelian randomization study (MR) study using publicly available GWAS data. Inverse variance weighted (IVW) analysis was the main MR analysis technique and was supplemented with other sensitivity analyses. Forty-two bacterial genera were associated with COVID-19 susceptibility, hospitalization, and severity in the IVW method. Among these gut microbiota, five gut microbiota (genus unknowngenus [id.1000005472], family unknownfamily [id.1000005471], genus Tyzzerella3, order MollicutesRF9.id.11579, and phylum Actinobacteria) were significantly associated with COVID-19 hospitalization and severity. Three gut microbiota (class Negativicutes, order Selenomonadales, and class Actinobacteria) were significantly associated with COVID-19 hospitalization and susceptibility, while two microbiota (class Negativicutes and order Selenomonadales) were significantly associated with COVID-19 hospitalization and severity, and susceptibility. Sensitivity analysis did not detect any heterogeneity and horizontal pleiotropy. Our findings demonstrated that several microorganisms were causally linked to COVID-19, and improved our understanding of the relationship between gut microbiota and COVID-19 pathology.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Microbiota , Humans , Gastrointestinal Microbiome/genetics , Mendelian Randomization Analysis , Dietary Supplements , Genome-Wide Association Study , Polymorphism, Single Nucleotide
11.
Recent Adv Antiinfect Drug Discov ; 2022 Nov 24.
Article in English | MEDLINE | ID: covidwho-2325768

ABSTRACT

Natural therapeutic microorganisms provide a potent alternative healthcare treatment nowadays, with the potential to prevent several human diseases. These health-boosting living organisms, probiotics mostly belong to Gram-positive bacteria such as Lactobacillus, Bifidobacterium, Streptococcus, Saccharomyces, Bacillus and Enterococcus. Initiated almost a century ago, the probiotic application has come a long way. The present review is focused on the potential therapeutic role of probiotics in ameliorating multiple infections, such as upper respiratory tract infections and viral respiratory infections, including Covid-19; liver diseases and hepatic encephalopathy; neurological and psychiatric disorders; autoimmune diseases, particularly rheumatoid arthritis, systemic lupus erythematosus and multiple sclerosis. Apart from these, the therapeutic exacerbations of probiotics in urinary tract infections have been extremely promising, and several approaches are reviewed and presented here. We also present upcoming and new thrust areas where probiotic therapeutic interventions are showing promising results, like faecal microbial transplant and vaginal microbial transplant.

12.
Front Immunol ; 14: 1180336, 2023.
Article in English | MEDLINE | ID: covidwho-2326978

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a global health crisis. Increasing evidence underlines the key role of competent immune responses in resisting SARS-CoV-2 infection and manifests the disastrous consequence of host immune dysregulation. Elucidating the mechanisms responsible for deregulated host immunity in COVID-19 may provide a theoretical basis for further research on new treatment modalities. Gut microbiota comprises trillions of microorganisms colonizing the human gastrointestinal tract and has a vital role in immune homeostasis and the gut-lung crosstalk. Particularly, SARS-CoV-2 infection can lead to the disruption of gut microbiota equilibrium, a condition called gut dysbiosis. Due to its regulatory effect on host immunity, gut microbiota has recently received considerable attention in the field of SARS-CoV-2 immunopathology. Imbalanced gut microbiota can fuel COVID-19 progression through production of bioactive metabolites, intestinal metabolism, enhancement of the cytokine storm, exaggeration of inflammation, regulation of adaptive immunity and other aspects. In this review, we provide an overview of the alterations in gut microbiota in COVID-19 patients, and their effects on individuals' susceptibility to viral infection and COVID-19 progression. Moreover, we summarize currently available data on the critical role of the bidirectional regulation between intestinal microbes and host immunity in SARS-CoV-2-induced pathology, and highlight the immunomodulatory mechanisms of gut microbiota contributing to COVID-19 pathogenesis. In addition, we discuss the therapeutic benefits and future perspectives of microbiota-targeted interventions including faecal microbiota transplantation (FMT), bacteriotherapy and traditional Chinese medicine (TCM) in COVID-19 treatment.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Humans , COVID-19/therapy , SARS-CoV-2 , COVID-19 Drug Treatment , Gastrointestinal Tract
13.
Drug Delivery System ; 37(5), 2022.
Article in Japanese | ProQuest Central | ID: covidwho-2319270

ABSTRACT

Dysbiosis, especially in the gut plays a crucial role in the pathogenesis of a wide variety of diseases, including inflammatory bowel disease, colorectal cancer, cardiovascular disease, obesity, diabetes and multiple sclerosis. At mucosal surfaces, mucosal polymeric immunoglobulin A(IgA)antibodies are known to be important to regulate the gut microbiota as well as to exclude infection induced by pathogenic bacteria or virus such as influenza and SARS-CoV-2(severe acute respiratory syndrome coronavirus 2). Since the 1970s, oral administration of IgA or IgG antibodies has been performed against infectious enteritis caused by pathogenic Escherichia coli or Clostridioides difficile. However, none of them has been successfully developed as an antibody drug up to now. Although IgA is well known to modulate the gut commensal microbiota, the therapeutic IgA drugs to treat dysbiosis has not been developed. Here, we discuss the advantages of therapeutic IgA antibodies.Alternate :抄録Dysbiosisは、健康な微生物叢と比較した微生物組成の変化であり、腸内微生物多様性の減少および微生物分類群の変化を特徴とする。腸内のdysbiosisはまた、炎症性腸疾患、結腸直腸がん、心血管疾患、肥満、糖尿病および多発性硬化症を含むさまざまな疾患の病因において重要な役割を果たすと提唱されている。腸の多量体免疫グロブリンA(IgA)抗体は、腸内微生物叢を調節するだけではなく、病原性細菌、インフルエンザやSARS-CoV-2(重症急性呼吸器症候群コロナウイルス2)などのウイルス感染を粘膜部位から排除するのに重要であることが、多くのエビデンスから示されている。1970年代以降、治療用IgAまたはIgGの経口投与試験が、主に病原性大腸菌またはディフィシル菌によって引き起こされる感染性腸炎を治療するために行われてきた。しかし、現在まで臨床応用として開発に成功したものはない。腸内病原体に対する防御機能に加えて、IgAは腸内共生微生物叢を調節して共生に導くことがよく知られているが、dysbiosisを治療するためのIgA治療薬の開発も進んでいない。本稿では、治療用IgA抗体の利点とその開発について議論する。

14.
Biomed Pharmacother ; 163: 114892, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2318147

ABSTRACT

The pandemic of COVID-19 has highlighted the intricate relationship between gut microbiome and overall health. Recent studies have shown that the Firmicutes/Bacteroidetes ratio in the gut microbiome may be linked to various diseases including COVID-19 and type 2 diabetes (T2D). Understanding the link between gut microbiome and these diseases is essential for developing strategies for prevention and treatment. In this study, 115 participants were recruited and divided into three groups: 1st group: T2D patients and healthy controls, 2nd group: COVID-19 patients with and without T2D, 3rd group: T2D patients with COVID-19 treated with or without metformin. Gut microbial composition at the phylum level was assessed using qRT-PCR with universal primers targeting the bacterial 16 S rRNA gene and specific primers for Firmicutes and Bacteroidetes. Data was analyzed using one-way ANOVA, logistic regression, and Spearman's rank correlation coefficient. The study found that the ratio of Firmicutes to Bacteroidetes (F/B) was higher in patients with both T2D and COVID-19 compared to those with only T2D or COVID-19. Additionally, the F/B ratio was positively correlated with C-reactive protein (CRP) in T2D and COVID-19 patients. The study also suggests that metformin treatment may affect this correlation. Logistic regression analysis showed that the F/B ratio was significantly associated with CRP. These findings suggest that the F/B ratio may be a potential biomarker for inflammation in T2D and COVID-19 patients and metformin treatment may have an effect on the correlation between F/B and CRP levels.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Metformin , Humans , Diabetes Mellitus, Type 2/metabolism , Metformin/therapeutic use , Bacteroidetes/genetics , Firmicutes , COVID-19/complications , Inflammation/drug therapy , Inflammation/complications , Biomarkers , C-Reactive Protein
15.
Chin Med ; 18(1): 37, 2023 Apr 10.
Article in English | MEDLINE | ID: covidwho-2316195

ABSTRACT

In recent years, the incidence of lung cancer is increasing. Lung cancer has become one of the most malignant tumors with the highest incidence in the world, which seriously affects people's health. The most important cause of death of lung cancer is metastasis. Therefore, it is crucial to understand the mechanism of lung cancer progression and metastasis. This review article discusses the physiological functions, pathological states and disorders of the lung and intestine based on the concepts of traditional Chinese medicine (TCM), and analyzes the etiology and mechanisms of lung cancer formation from the perspective of TCM. From the theory of "the exterior and interior of the lung and gastrointestinal tract", the theory of "the lung-intestinal axis" and the progression and metastasis of lung cancer, we proposed e "lung-gut co-treatment" therapy for lung cancer. This study provides ideas for studying the mechanism of lung cancer and the comprehensive alternative treatment for lung cancer patients.

16.
Prz Gastroenterol ; 18(1): 61-66, 2023.
Article in English | MEDLINE | ID: covidwho-2309526

ABSTRACT

SARS-CoV-2 infection manifests mainly by involving the respiratory system. Due to the presence of abdominal symptoms, the digestive system is clearly involved in the expression, transmission, and possible pathogenesis of COVID-19. There are many theories regarding the development of abdominal symptoms, including angiotensin 2 receptor, cytokine storm, and disturbances of the intestinal microbiome. This paper provides an overview of the most important meta-analyses and publications on gastrointestinal symptoms and the gut microbiome in COVID-19.

17.
J Appl Microbiol ; 134(1)2023 Jan 23.
Article in English | MEDLINE | ID: covidwho-2308562

ABSTRACT

AIMS: To evaluate the effects of the Qingwen Gupi decoction (QGT) in a rat model of bleomycin-induced pulmonary fibrosis (PF), and explore the underlying mechanisms by integrating UPLC-Q-TOF/MS metabolomics and 16S rDNA sequencing of gut microbiota. METHODS AND RESULTS: The animals were randomly divided into the control, PF model, pirfenidone-treated, and low-, medium-, and high-dose QGT groups. The lung tissues were examined and the expression of TGF-ß, SMAD-3, and SMAD-7 mRNAs in the lung tissues were analyzed. Metabolomic profiles were analyzed by UPLC-QTOF/MS, and the intestinal flora were examined by prokaryotic 16 rDNA sequencing. Pathological examination and biochemical indices revealed that QGT treatment improved the symptoms of PF by varying degrees. Furthermore, QGT significantly downregulated TGF-ß1 and Smad-3 mRNAs and increased the expression levels of Smad-7. QGT-L in particular increased the levels of 18 key metabolic biomarkers that were associated with nine gut microbial species and may exert antifibrosis effects through arachidonic acid metabolism, glycerophospholipid metabolism, and phenylalanine metabolism. CONCLUSIONS: QGT alleviated PF in a rat model through its anti-inflammatory, antioxidant, and anti-fibrotic effects, and by reversing bleomycin-induced gut dysbiosis.This study lays the foundation for further research on the pathological mechanisms of PF and the development of new drug candidates.


Subject(s)
Gastrointestinal Microbiome , Pulmonary Fibrosis , Rats , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Lung , Bleomycin/adverse effects , Transforming Growth Factor beta/metabolism , Metabolomics
18.
Heliyon ; 9(5): e15668, 2023 May.
Article in English | MEDLINE | ID: covidwho-2301149

ABSTRACT

Dysbiosis of the gut microbiota with aging contributes to a reduction in important cross-feeding bacterial reactions in the gut and immunosenescence, which could contribute to a decrease in vaccine efficacy. Fever, cough, and fatigue are the main signs of coronavirus disease 2019 (COVID-19); however, some patients with COVID-19 present with gastrointestinal symptoms. COVID-19 vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the best measures to reduce SARS-CoV-2 infection rates and the severity of COVID-19. The immunogenicity of COVID-19 vaccines is influenced by the composition of the gut microbiota, and the immune response to COVID-19 vaccines decreases with age. In this review, we discuss gut microbiota dysbiosis and immunosenescence in the older adults, the role of gut microbiota in improving the efficacy of COVID-19 vaccines, and dietary interventions to improve the efficacy of COVID-19 vaccines in the older adults.

19.
Front Microbiol ; 14: 1098386, 2023.
Article in English | MEDLINE | ID: covidwho-2299318

ABSTRACT

Thousands of microorganisms compose the human gut microbiota, fighting pathogens in infectious diseases and inhibiting or inducing inflammation in different immunological contexts. The gut microbiome is a dynamic and complex ecosystem that helps in the proliferation, growth, and differentiation of epithelial and immune cells to maintain intestinal homeostasis. Disorders that cause alteration of this microbiota lead to an imbalance in the host's immune regulation. Growing evidence supports that the gut microbial community is associated with the development and progression of different infectious and inflammatory diseases. Therefore, understanding the interaction between intestinal microbiota and the modulation of the host's immune system is fundamental to understanding the mechanisms involved in different pathologies, as well as for the search of new treatments. Here we review the main gut bacteria capable of impacting the immune response in different pathologies and we discuss the mechanisms by which this interaction between the immune system and the microbiota can alter disease outcomes.

20.
Med Gas Res ; 13(4): 212-218, 2023.
Article in English | MEDLINE | ID: covidwho-2298723

ABSTRACT

The medical use of molecular hydrogen, including hydrogen-rich water and hydrogen gas, has been extensively explored since 2007. This article aimed to demonstrate the trend in medical research on molecular hydrogen. A total of 1126 publications on hydrogen therapy were retrieved from the PubMed database until July 30, 2021. From 2007 to 2020, the number of publications in this field had been on an upward trend. Medical Gas Research, Scientific Report and Shock have contributed the largest number of publications on this topic. Researchers by the name of Xue-Jun Sun, Ke-Liang Xie and Yong-Hao Yu published the most studies in the field. Analysis of the co-occurrence of key words indicated that the key words "molecular hydrogen," "hydrogen-rich water," "oxidative stress," "hydrogen gas," and "inflammation" occurred most frequently in these articles. "Gut microbiota," "pyroptosis," and "COVID-19" occurred the most recently among the keywords. In summary, the therapeutic application of molecular hydrogen had attracted much attention in these years. The advance in this field could be caught up by subscribing to relevant journals or following experienced scholars. Oxidative stress and inflammation were the most important research directions currently, and gut microbiota, pyroptosis, and coronavirus disease 2019 might become hotspots in the future.


Subject(s)
COVID-19 , Humans , Bibliometrics , Hydrogen/therapeutic use , Oxidative Stress , Water
SELECTION OF CITATIONS
SEARCH DETAIL